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A new model is proposed to predict the micro-creep behavior of the composites with application in microelectronic and 
optoelectronic/photonic devices based on energy formulation, equilibrium and fundamental equations with considering 
geometric relations. In the present model, obtaining the unknown parameters is easier than the available approaches. 
Predicting the creep parameters is very significant to design the optoelectronic and photonic composites with optical fibers. 
Moreover, investigation of the creep behavior is important for failure, fracture, fatigue, and creep resistance of the 
optoelectronic/photonic composites. Finally, excellent agreements are found between the obtained analytical and FEM 
results. 
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1. Introduction 
 

The use of the optoelectronic/photonic composites is 

recently growing because of their applications in different 

industries. Consequently, an understanding of the micro-

creep behavior and its mechanisms for the materials is 

important and necessary, because, the creep in the 

electrical and optoelectronic/photonic systems (devices), 

and optical fibers can be very dangerous. Creep in these 

systems can create the serious disturbances in the 

advanced systems. The increasing application of the 

optical fibers in the optoelectronic/photonic composites 

requires a thorough knowledge of their creep 

characteristics, creep resistances, and deformation 

mechanisms. 

Many researchers have studied the steady state creep 

behavior by analytical, numerical and experimental 

methods. Substantial and important researches have been 

done concerning the creep of the reinforced materials and 

their applications analytically [1-8], numerically [9-11], 

and experimentally [12-17]. The study presented in 

reference [7] analyzes the optical 1-soliton in the hollow-

core photonic crystal fibers in the presence of space-

dependent inter-modal dispersion, detuning and fiber loss 

using Hirota's bilinear and ansatz methods, in which, the 

explicit optical bright 1-solitons have been reported. For 

example, Lee et al. [11] proposed easy and direct 

methodology for stress analysis and prediction of the 

steady state creep deformation of discontinuously 

reinforced metal matrix composites utilizing finite element 

method (FEM). Also, the detection of volatile organic 

compound of methanol, ethanol, isopropanol, and acetone 

vapour at room temperature employing undoped ZnO and 

Al-doped ZnO coated on the optical fiber core has been 

reported [17]. Recently as a different work, the creep 

behavior in the materials has been studied using atomic 

properties [18].  

In this study, the micro-creep model of the 

optoelectronic/photonic composites is analytically 

simulated for predicting and preventing possible 

dangerous creep behavior in the composite devices based 

on energy formulation, equilibrium and fundamental 

equations, and geometric relations. FEM is used for 

validating the present analytical results. To validate the 

present analytical method and obtained results, the results 

of the present analytical and FE methods are compared 

with together by experimental data for a creeping metal 

matrix composite MMC. Metal matrix composite is 

selected to validate the obtained results because of the 

inaccessibility to the experimental data of the creeping 

optoelectronic/photonic composites. 

 

 

2. Materials and methods 
 

Here, an axisymmetric unit cell is considered for 

simulating a complete short fiber composite shown in Fig. 

1. In the mentioned model supposed that a cylindrical fiber 

with a radius a  and a length 2l  is inserted in a coaxial 

cylindrical matrix with an outer radius b  and a length 2l ' . 

The volume fraction and aspect ratio of the fiber are 

introduced by f and s l / a  respectively. In addition, 

k l' a / lb  is assumed as a parameter related to the 

geometry of the unit cell. 
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Fig. 1.  Model of the unit cell.  

 

 

An axial load “ 0 ” is uniformly applied on the end 

faces of the unit cell (at z l'  ). The steady state 

condition is assumed. Elastic deformations are very small 

and are neglected in comparison with the creep 

deformations. The fiber and matrix have respectively 

elastic and plastic behaviors during the creep analysis. 

Material properties are assumed to be constant under 

applied load and temperature. The behavior of the 

creeping matrix is expressed by an exponential law as 

given in Eqs. (1, 2). 
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In which, the parameters “ ” and “ ” are the 

material constants in the creeping matrix. These 

parameters are obtained by experimental methods for the 

steady state creep of the matrix. Moreover, 0  and e  are 

the equivalent stress and equivalent strain rates of the 

creeping matrix respectively. They are functions of r and 

z. Therefore, it turns out to be a very complex nonlinear 

time dependent problem. Then, the equilibrium equations 

in the cylindrical coordinate are introduced in the general 

form as the following, 
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This problem is axisymmetric, and then the 

equilibrium equations reduce to, 
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It is assumed that the body forces “ rF , F  and zF ” 

are small enough and may be zero. So, yields 
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The generalized fundamental equations for the steady 

state creep small deformation of the creeping matrix 

material in r,  and z directions are the following forms, 
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In which, the parameter “ ” is equal to 2 and 

parameter   is the following form,  
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Where, the parameter “  ” is constant and the equivalent 

stress e σ  is given by the following form, 
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And also rσ , θσ , zσ  and rzτ  are the stress components 

in the directions indicated by subscripts. Furthermore, e  
is the equivalent strain rate and is described by Eqs. (1, 2 

and 16), as the following,  
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Where, the parameters “ r z, ,    and rz ” are the 

strain rate components in the directions indicated by 

subscripts. In which, “  ,  and  ” are equal to 0.34, 0.5 

and 2 respectively. The strain rate-displacement rate 

relations are also given by the following, 
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For the plastic-creep deformations (creeping material), 

each of the six stress-strain relations engaged is nonlinear 

and time dependent, and the strain-energy density in 

cylindrical coordinate at the any time may be expressed as, 
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Also, for applied external load 0 , the potential 

energy is as the following, 
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Then, the external virtual work over a virtual 

displacement rate field u  is, 
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The principle of virtual work, then tells us that an 

elastic body is in equilibrium if and only if, 
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In which,  
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That is, in the state of the equilibrium, the 

displacement rate field makes the total potential energy 

stationary with respect to virtual displacements. It can 

further be shown that for the equilibrium to be stable, the 

total potential energy must be a minimum. If   is a local 

minimum, then, for any nonzero virtual displacement rate 

u  field  , must be positive. In addition, the applied 

boundary conditions are given as the following, 
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Also, the displacement rate at the outer surface, bu ,               

(at r = b) is determined by the following relation, 

 

 n 2n 2

r

0
n

be

2σ k f s
ε | exp , n 2







   
  
 
  

                (31) 

 

After simplifying the results, for the normalized axial 

displacement rate have, 
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Also, for normalized radial displacement rate have, 
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It should be mentioned that the relation between the 

axial and radial displacement rates is according to the 

following formulation, 
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Also, Eq. (36) is known as the incompressibility 

condition that must be satisfied for the plastic 

deformations. Moreover, Eqs. (32-35) are determined 

using the combination of the energy formulations (Eqs. 

(21-25)), equilibrium and fundamental equations (Eqs. (1-

16, 31,36)), and geometric relations (Eqs. (17-20)) with 

considering the applied boundary conditions (Eqs. (26-

30)). 

 

 

3. Results and discussions 
 

For validation of the present method, the short fiber 

composite SiC/6061Al is selected as a case study and the 

obtained analytical and numerical results are compared 

with together. In which, steady state creep behavior of 

silicon carbide whisker/6061 aluminum composite has 

been studied at 300° C under constant stress [12]. For the 

composite used here (SiC/Al6061), the volume fraction (f) 

of fibers is 15% and the fibers have an aspect ratio (s) of 

7.4 and k = 0.76 [12]. Also, the steady state creep 

constants of the matrix material, “ ” and “ ”, in Eq. (1) 

are considered as  = exp (-24.7) and 6.47   [12]. The 

following figures show the creep behaviors at the outer 

surface (r=b) in the second stage creep of the short fiber 

composites. Also, the axisymmetric unit cell model is 

considered for FEM creep analyzing.  

The results obtained from the present method are 

presented in the following figures (see Figs. 2, 3). As 

mentioned before (inaccessibility to the experimental data 

of the creeping optoelectronic/photonic composites), for 

comparing the results of the present method, the 
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SiC/6061Al composite is chosen as a case study and also 

the determined analytical and numerical results are 

compared with together. 

 

 

Fig. 2.  Linear behavior of the axial displacement 

 rate at r = b.  

 

Fig. 2 shows smooth and uniform gradient in the axial 

displacement rate behavior at the outer surface of the unit 

cell in the steady state creep of the short fiber composites. 

That is, the mentioned behavior is related to the creeping 

matrix at the outer surface of the unit cell in the short fiber 

composites. 

 

 

Fig. 3.  Linear behavior of the radial displacement 

 rate at r = b. 

 

Slow and soft behaviors are also seen in Fig. 3 due to 

the steady state creep of the short fiber composite. That is, 

these behaviors are desirable and controllable. Also, we 

can control these behaviors by the obtained relations 

presented in Eqs. (32-35). According to the Figs. 2, 3, 

linear behaviors are observed in the radial and axial 

displacement rate behaviors in the steady state creep of the 

short fiber composites. That is, linear behavior with 

constant slope and gradient is seen in the axial and radial 

displacement rate behaviors at the outer surface (r = b). 

These linear behaviors are because of the nature of the 

tensile steady state creep and rate dependent small 

deformations. In these figures, good and proper 

compatibilities and agreements are found between finite 

element method (FEM) and present analytical work results 

for predicting the creep behaviors. Therefore, we can 

control the creep displacement rates in the 

optoelectronic/photonic composites with optical fiber 

using the present analytical method. Also, with this creep 

prediction, we can prevent from dangerous and 

undesirable events arising from the creep phenomenon in 

the optoelectronic/photonic composite devices with optical 

fiber. 

 

 

4. Summary and conclusion 
 

In this paper, for analyzing the micro-creep in the 

optoelectronic/photonic composite devices, a new 

analytical method was introduced to predict the creep 

behavior of the short fiber composites based upon energy 

formulations, equilibrium and fundamental equations, and 

geometric relations. Acceptable agreements were found 

between the numerical and analytical results. According to 

the obtained results, the following conclusions can be 

concluded, 

 We can control the creep displacement rate 

behaviors in the optoelectronic/photonic 

composite devices with optical fiber by means of 

the present analytical method. Moreover, with the 

creep predicting, we can prevent from hazardous 

and unwelcome events arising from the 

happening the creep phenomenon in the 

optoelectronic/photonic composite devices with 

optical fiber. 

 Uniform gradient is seen in the axial and radial 

displacement rate behaviors at the outer surface. 

So, these behaviors are controllable. 

 Linear behavior with constant slope and gradients 

are observed in the axial and radial displacement 

rate behaviors at the outer surface. 

 These linear behaviors may be due to the nature 

of the tensile second stage creep and rate and time 

dependent small deformations. 

 So, prediction of the axial and radial 

displacement rate behaviors at the outer surface 

of the short fiber composites is very significant 

for better designing composites in the creep of the 

optoelectronic/photonic composite devices with 

optical fiber. 

 

-2

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 a
x
ia

l 
d

is
p

la
ce

m
en

t 
 .

 

ra
te

 a
t 

r 
=

 b
. 

Normalized axial position, (z / l) 

FEM

Present work

6061Al/15%SiC 

573 K 

80 MPa 

-2

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 r
ad

ia
l 

d
is

p
la

ce
m

en
t 

 .
 

ra
te

 a
t 

r 
=

 b
. 

Normalized axial position, (z / l) 

FEM

Present work

6061Al/15%SiC 

573 K 

80 MPa 



414                                                                                V. Monfared, S. Daneshmand 

 
References 

 
  [1] H. Fukuda, T. W. Chou, J. Compos. Mater. 1(15), 79  

        (1981). 

  [2] D. M. McClung, J. Can Geotech, Int. J. Rock. Mech.  

        Min. Sci. Geomech. Abstracts. 20(5), 167 (1983). 

  [3] M. McLean, Compos. Sci. Technol. 23, 37 (1985). 

  [4] Y. S. Lee, T. J. Batt, P. K. Liaw, Int. J. Mech. Sci.  

        32(10), 801 (1990). 

  [5] J. Zhang, Compos.  Sci. Technol. 63(13), 1877  

       (2003). 

  [6] V. Monfared, Res. J. Appl. Sci. Eng. Technol. 4(18),  

        3516 (2012). 

  [7] Q. Zhou, Q. Zhu, C. Wei, J. Lu, L. Moraru, A.  

        Biswas, Optoelectron. Adv. Mater. -Rapid Comm.  

        8(11-12), 995 (2014). 

  [8] V. Monfared, D. Fazaeli, S. Daneshmand, N.  

        Shafaghatian, Ind. J. Sci. Technol. 7(2), 180 (2014). 

  [9] A. Levy, J. M. Papazian, Acta. Metall. Mater. 39(10),  

       2255 (1991).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[10] K. J. Kim, W. R. Yu, M. S. Kim, Compos. Sci.  

       Technol. 68(7–8), 1688 (2008).  

[11] W. J. Lee, J. H. Son, I. M. Park, Y. H. Park, Comput.  

       Mater. Sci. 48(4), 802 (2010). 

[12] T. Morimoto, T. Yamaoka, H. Lilholt, M. Taya, J.  

        Eng. Mater. Technol. 110, 70 (1988). 

[13] D. W. Meyer, R. F. Cooper, M. E. Plesha, Acta.  

        Metall. Mater. 41(11), 3157 (1993). 

[14] L. Miu, D. Miu, Supercond. Sci. Technol. 23(2), 1  

        (2010). 

[15] Z. Jianfang, Y. Xiaobin, H, Ning, Procedia  

        Engineering, 26, 1526 (2011).  

[16] X. Yang, Y. Sun, D. Shi, J. Non-Cryst. Solids. 358(3),  

       519 (2012).  

[17] A. R. A. Rashid, P. S. Menon, S. Shaari,  

        Optoelectron. Adv. Mater.-Rapid Comm. 7(11-12),  

        835 (2013). 

[18] V. Monfared, S. Daneshmand, Kovove. Mater. 

http://www.kovmat.sav.sk/abstract.php?rr=53&cc=2&ss=

60, In press, 53(2), (2015). 

 

 

 

______________________ 
*Corresponding author: vahid_monfared@alum.sharif.edu,  

                                       vahid_monfared_57@yahoo.com,  

                                      

 

http://oam-rc.inoe.ro/index.php?option=magazine&op=list&revid=87
http://www.indjst.org/index.php/indjst/issue/view/4159
http://www.kovmat.sav.sk/abstract.php?rr=53&cc=2&ss=60
http://www.kovmat.sav.sk/abstract.php?rr=53&cc=2&ss=60
mailto:vahid_monfared@alum.sharif.edu
mailto:vahid_monfared_57@yahoo.com

